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Abstract—Prevalent techniques in zero-shot learning do not
generalize well to other related problem scenarios. Here, we
present a unified approach for conventional zero-shot, generalized
zero-shot and few-shot learning problems. Our approach is based
on a novel Class Adapting Principal Directions (CAPD) concept
that allows multiple embeddings of image features into a semantic
space. Given an image, our method produces one principal
direction for each seen class. Then, it learns how to combine
these directions to obtain the principal direction for each unseen
class such that the CAPD of the test image is aligned with
the semantic embedding of the true class, and opposite to the
other classes. This allows efficient and class-adaptive information
transfer from seen to unseen classes. In addition, we propose an
automatic process for selection of the most useful seen classes
for each unseen class to achieve robustness in zero-shot learning.
Our method can update the unseen CAPD taking the advantages
of few unseen images to work in a few-shot learning scenario.
Furthermore, our method can generalize the seen CAPDs by
estimating seen-unseen diversity that significantly improves the
performance of generalized zero-shot learning. Our extensive
evaluations demonstrate that the proposed approach consistently
achieves superior performance in zero-shot, generalized zero-shot
and few/one-shot learning problems.

Index Terms—Zero-Shot learning, Few-shot learning, Gener-
alized Zero-Shot learning, Class Adaptive Principal Direction

I. INTRODUCTION

Being one of the most fundamental tasks in visual under-
standing, object classification has long been the focus of at-
tention in computer vision. Recently, significant advances have
been reported, in particular for supervised learning using deep
learning based techniques that are driven by the emergence of
large-scale annotated datasets, fast computational platforms,
and efficient optimization methods [42], [44].

Towards an ultimate visual object classification, this paper
addresses three inherent handicaps of supervised learning
approaches. The first one is the dependence on the availability
of labeled training data. When object categories grow in
number, sufficient annotations cannot be guaranteed for all
objects beyond simpler and frequent single-noun classes. For
composite and exotic concepts (such as American crow and
auto racing paddock) not only the available images do not
suffice as the number of combinations would be unbounded,
but often the annotations can be made only by experts [24],
[47]. The second challenge is the appearance of new classes
after the learning stage. In real world situations, we often
need to deal with an ever-growing set of classes without
representative images. Conventional approaches, in general,
cannot tackle such recognition tasks in the wild. The last
shortcoming is that supervised learning, in its customarily
contrived forms, disregards the notion of wisdom. This can be
exposed in the fact that we can identify a new object by just

having a description of it, possibly leveraging its similarities
with the previously learned concepts, without requiring an
image of the new object [26].

In the absence of object annotations, zero-shot learning
(ZSL) aims at recognizing object classes not seen at the
training stage. In other words, ZSL intends to bridge the
gap between the seen and unseen classes using semantic
(and syntactic) information, which is often derived from
textual descriptions such as word embeddings and attributes.
Emerging work in ZSL attempt to predict and incorporate
semantic embeddings to recognize unseen classes [34], [49],
[26], [55], [29]. As noted in [22], semantic embedding itself
might be noisy. Instead of a direct embedding, some methods
[4], [50], [37], [60] utilize global compatibility functions, e.g.
a single projection in [60], that project image features to the
corresponding semantic representations. Intuitively, different
seen classes contribute differently to describe each unseen
class. Enforcing all seen and unseen classes into a single global
projection undermines the subtle yet important differences
among the seen classes. It eventually limits ZSL approaches by
over-fitting to a specific dataset, visual and semantic features
(supervised or unsupervised). Besides, incremental learning
with newly added unseen classes using a global projection
is also problematic due to its less flexibility.

Traditionally, ZSL approaches (e.g., [7], [59], [39]) assume
that only the unseen classes are present in the test set. This
is not a realistic setting for recognition in the wild where
both unseen, as well as seen classes, can appear during the
test phase. Recently [51], [9] tested several ZSL methods in
generalized zero-shot learning (GZSL) settings and reported
their poor performance in this real world scenario. The main
reason of such failure is the strong bias of existing approaches
towards seen classes where almost all test unseen instances
are categorized as one of the seen classes. Another obvious
extension of ZSL is few/one-shot learning (F/OSL) where few
labeled instances of each unseen class are revealed during
training. The existing ZSL approaches, however, do not scale
well to the GZSL and FSL settings [1], [7], [50], [60], [28].

To provide a comprehensive and flexible solution to ZSL,
GZSL and FSL problem settings, we introduce the concept
of principal directions that adapt to classes. In simple terms,
CAPD is an embedding of the input image into the semantic
space such that, when projected onto CAPDs, the semantic
space embedding of the true class gives the highest response.
A visualization of the CAPD concept is presented in Fig. 1. As
illustrated, the CAPDs of a Leopard (Fig. 1a) and a Persian cat
image (Fig. 1b) point to their true semantic label embedding
shown in violet and blue respectively, which gives the highest
projection response in each case.
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(a) Input image from unseen class Leopard
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(b) Input image from unseen class Persian cat

Fig. 1: Visualization of class adapting principal directions (CAPD) on a 2D tSNE [46] for illustration. Text labels on the plot
represent the seen (black) and unseen (colored) semantic space embeddings of AwA classes in 2D space. For a given test
input (a) Leopared (b) Persian cat, CAPDs of the unseen classes are drawn with the same color of the unseen class label text.
The bars indicate the responses of a semantic space embeddings projected onto their corresponding CAPDs. Our approach
classifies an input to the class that has the maximum response. We also introduce an improved approach to use a reduced set
of CAPDs (shown as dashed line) while obtaining better alignment with the correct unseen class embedding (see Sec. III-B).

Our proposed approach utilizes three main sources of
knowledge to generalize learning from seen to unseen classes.
First, we model the relationships between the visual fea-
tures and semantics for seen classes using the proposed
‘Class Adapting Principal Directions’ (CAPDs). CAPDs are
computed using class-specific discriminative models which
are learned for each seen category in the ‘visual domain’
(Sec. III-A1). Second, our approach effectively models the
relationships between the seen and unseen classes in the
‘semantic space’ defined by CAPDs. To this end, we introduce
a mixing transformation, which learns the optimal combination
of seen semantics which are sufficient to reconstruct the
semantic embedding of an unseen class (Sec. III-A2). Third,
we learn a distance metric for the seen CAPDs such that
samples belonging to the same class are clustered together,
while different classes are mapped further apart (Sec. III-A2).
This learned metric transfers cross domain knowledge from
visual domain to semantic embedding space. Such a mapping
is necessary because the class semantics, especially those
collected from unsupervised sources (e.g., word2vec), can be
noisy and highly confusing. The distance metric is then used
to robustly estimate the seen-unseen semantic relationships.

While most of the approaches in the literature focus on
specific sub-problems and do not generalize well to other
related settings, we present a unified solution which can easily
adapt to ZSL, GZSL and F/OSL settings. We attribute this
strength to two key features in our approach: a) a highly
‘modular learning’ scheme and b) the two-way inter-domain
‘knowledge sharing’. Specifically for the GZSL, we present a
novel method to generalize seen CAPDs that avoids the inher-
ent bias of prediction towards seen classes (Sec. III-C). The
generalized seen CAPD balances the seen-unseen diversity in
the semantic space, without any direct supervision from the

visual data. In contrast to ZSL and GZSL, the F/OSL setting
allows few or a single training instance of the unseen classes.
This information is used to update unseen CAPDs based on
the learned relationships between visual and semantic domains
for unseen classes (Sec. III-D). The overall pipeline of our
learning and prediction process is illustrated in Fig. 2.

We hypothesize that not all seen classes are instrumental
in describing a novel unseen category. To validate this claim,
we introduce a new constraint during the reconstruction of
semantic embedding of the unseen classes. We show that
automatically reducing the number of seen classes in the
mixing process to obtain CAPD of each unseen class results
in a significant performance boost (Sec. III-B). We perform
extensive experimental evaluations on four benchmark datasets
and compare with several state-of-the-art methods. Our results
demonstrate that the proposed CAPD based approach provides
superior performance in supervised and unsupervised settings
of ZSL, GZSL and F/OSL.

To summarize, our main contributions are:
• We present a unified solution to ZSL, GZSL and F/OSL

by introducing the notion of class adapting principal
directions that enable efficient and discriminative embed-
dings of unseen class images in the semantic space.

• We propose a semantic transformation to link the em-
beddings for seen and unseen classes based on a learned
distance measure.

• We provide an automatic solution to select a reduced set
of relevant seen classes resulting in a better performance.

II. RELATED WORK

Class Label Description: It is a common practice to
employ class label descriptions to transfer knowledge from
seen to unseen class in ZSL. Such descriptions may come
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from either supervised or unsupervised learning settings. For
the supervised case, class attributes can be one source as well
[12], [25], [35], [47]. These attributes are often generated
manually, which is a laborious task. As a workaround, word
semantic space embeddings derived from a large corpus of
unannotated text (e.g. from Wikipedia) can be used. Among
such unsupervised word semantic embeddings, word2vec [31],
[30] and GloVe [36] vectors are frequently employed in
ZSL [58], [50]. These ZSL methods are sometimes (arguably
confusingly) referred as unsupervised zero-shot learning [5],
[1]. Supervised features tend to provide better performance
than the unsupervised ones. Nevertheless, unsupervised fea-
tures provide more scalability and flexibility since they do
not require expert annotation. Recent approaches attempt to
advance unsupervised ZSL by mapping textual representations
(e.g. word2vec or GloVe) as attribute vectors using heuristic
measures [23], [5]. In our work, we use both types of features
and evaluate on both supervised and unsupervised ZSL to
demonstrate the strength of our approach.

Embedding Space: ZSL strategies aim to map between
two different sources of information and two spaces: image
and label embeddings. Based on the mapping scheme, ZSL
approaches can be grouped into two categories. The first
category is attribute/word vector prediction. Given an image,
they attempt to approximate label embedding and then classify
an unseen class image based on the similarity of predicted
vector with unseen attribute/word vector. For example, in
an early seminal work, [34] introduced a semantic output
code classifier by using a knowledge base of attributes to
predict unseen classes. [49], [26] proposed direct and indirect
attribute prediction methods via a probabilistic realization. [55]
formulated a discriminative model of category level attributes.
[29] proposed an approach of transferring semantic knowl-
edge from seen to unseen classes by a linear combination
of classifiers. The main problem with such direct attribute
prediction is the poor performance when noisy or biased
attribute annotations are available. Jayaraman and Grauman
[22] addressed this issue and proposed a discriminative model
for ZSL.

Instead of predicting word vectors, the second category of
approaches learn a compatibility function between image and
label embeddings, which returns a compatibility score. An
unseen instance is then assigned to the class that gives the
maximum score. For example, [2] proposed a label embedding
function that ranks correct class of unseen image higher than
incorrect classes. In [39], authors use the same principle but an
improved loss function and regularizer. Qiao et al. [37] further
improved the former approach by incorporating a component
for noise suppression. In a similar work, Xian et al. [50]
added latent variables in the compatibility function which
can learn a collection of label embeddings and select the
correct embedding for prediction. Our method also has similar
compatibility function based on inner product of CAPD and
corresponding semantic vector. The use of CAPDs provide an
effective avenue to recognition.

Similarity Matching: This type of approaches build linear
or nonlinear classifiers for each seen class, and then relate
those classifiers with unseen classes based on class-wise sim-

ilarity measures [7], [11], [18], [29], [38]. Our method finds
similar relation but instead of classifiers, we relate CAPDs of
seen and unseen classes. Moreover, we compute this relation
on a learned metric of semantic embedding space which let
us consider subtle discriminative details.

Few/One-shot Learning: FSL has a long history of investi-
gation where few instances of some classes are used as labeled
during training [41], [13]. Although ZSL problem can easily be
extended to FSL, established ZSL methods are not evaluated in
FSL settings. A recent work [45] reports FSL performance of
only two ZSL methods e.g. [43], [15]. In another work, [8],
[19] presented FSL results on ImageNet. In this paper, we
extend our approach to FSL settings and compare our method
with the reported performance in [45].

Generalized Zero-shot Learning: GZSL setting signifi-
cantly increases the complexity of the problem by allowing
both seen and unseen classes during testing phase [51], [9],
[8]. This idea is related to open set recognition problem where
methods consider to reject unseen objects in conjunction with
recognizing known objects [6], [21]. In open set case, methods
consider all unseen objects as one outlier class. In contrast,
GZSL represents unseen classes as individual separate cat-
egories. Very few of the ZSL methods reported results on
GZSL setting [8], [27], [52]. [15] proposed a joint visual-
semantic embedding model to facilitate the generalization of
ZSL. [43] offered a novelty detection mechanism which can
detect whether the test image came from seen or unseen
category. Chao et al. [9] proposed a calibration mechanism
to balance seen-unseen prediction score which any ZSL al-
gorithm can adopt at decision making stage and proposed an
evaluation method called Area Under Seen-Unseen accuracy
Curve (AUSUC). Later, several other works [8], [52] adopted
this evaluation strategy. In another recent work, Xian et al.
[51] reported benchmarking results for both ZSL and GZSL
performance of several established methods published in the
literature. In this paper, we describe extension of our ZSL
approach to efficiently adapt with GZSL settings.

III. OUR APPROACH

Problem Formulation: Suppose, the set of all class labels
is y = y S ∪ y U where y S = {1, ...,S} and y U =
{S+1, ...,S + U} are the sets of seen and unseen class labels
respectively, with no overlap i.e., y S ∩ y U = ∅. Here, S and
U denote the total number of seen and unseen classes, respec-
tively. For all classes in the seen and unseen class sets, we
have associated semantic class embeddings (either attributes
or word vectors) denoted by the sets ES = {es : s ∈ y S}
and EU = {eu : u ∈ y U} respectively, where es, eu ∈ Rd.
For every seen (s) and unseen (u) class, we have a number
of instances denoted by ns and nu respectively. The matrices
Xs = [x1

s, ...,x
ns
s ] for s ∈ y S , and Xu = [x1

u, ...,x
nu
u ] for

u ∈ y U represent the image features for the seen class s and
the unseen class u, respectively, such that xs,xu ∈ Rk. Below,
we define the three problem instances addressed in this paper:
• Zero Shot Learning (ZSL): The image features of the

unseen classes Xu are not available during the training
stage. The goal is to assign an unseen class label u ∈ y U

to a given unseen image using its feature vector xu.
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ps. Afterwards, unseen CAPDs, pu are com-
puted by linearly combining seen CAPDs using
α (or β for reduced case). Finally, prediction
is done by computing the maximum projection
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eu. FSL: x is fed to unseen classifiers Wu to
produce another version of unseen CAPDs p′

u

which are combined with previously computed
pu through δ′u and δu to find an updated version
of unseen CAPDs pf

u. Final prediction is done
by maximum response of pf

u and eu. GZSL:
Seen CAPDs, ps of conventional ZSL setting are
generalized using γ to produce generalized seen
CAPDs, pg

s . For prediction, both pg
s and pu are

considered for calculating maximum response of
CAPDs and their corresponding semantic embed-
dings, es and eu.

• Generalized Zero Shot Learning (GZSL): The image
features of the unseen classes Xu are not available during
the training stage similar to ZSL. The goal is to assign a
class label l ∈ y to a given image using its feature vector
x. Notice that, the true class of x may belong to either
a seen or an unseen class.

• Few/One Shot Learning (FSL): Only a few/one ran-
domly chosen image features from Xu are available as
labeled examples during the training stage. The goal is
same as the ZSL setting above.

In Secs. III-A and III-B, we first provide a general frame-
work of our approach mainly focused on ZSL. Afterwards,
in Secs. III-D and III-C we extend our approach to FSL and
GZSL settings, respectively. Before describing our extensive
experimental evaluations in Sec. V, we also provide an in-
depth comparison with the existing literature in Sec. IV.

A. Class Adapting Principal Direction

We introduce the concept of ‘Class Adapting Principal
Direction’ (CAPD), which is a projection of image features
onto the semantic space. The CAPD is computed for both
seen and unseen classes, however the derivation of the CAPD
is different for both cases. In the following, we first introduce
our approach to learn CAPDs for seen classes and then use
the learned principal directions to derive CAPDs for unseen
classes.

1) Learning CAPD for Seen Classes: For a given image
feature xs belonging to the seen class s, we define its CAPD
ps in terms of a linear mapping parametrized by Ws as,

ps = WT
s xs. (1)

Our goal is to learn the class-specific weights Ws such that
the output principal directions are highly discriminative in
the semantic space (rather than the image feature space). To
this end, we introduce a novel loss function which uses the

corresponding semantic space embedding es of seen class s
to achieve maximum separability.

Proposed Objective Function: Given the training samples
Xs for the seen class s, Ws is learned such that the projection
of ps on the semantic space embedding es, defined by the
inner product 〈ps, es〉, generates a strong response. Precisely,
the following objective function is minimized:

min
Ws

1

κ

S∑
c=1

nc∑
m=1

log
(
1 + exp

{
L(xmc ;Ws)

})
+
λs
2
‖Ws ‖22

(2)
where L is the cost for a specific input xmc , λs is the regu-
larization weight set using cross validation and κ =

∑S
c=1 nc.

We define the cost L as:

L(xmc ;Ws) =

{
〈ps, ec〉 − 〈ps, es〉, c 6= s
〈ps, 1

S−1
∑
t 6=s

et〉 − 〈ps, es〉, c = s

In the above loss function, two different scenarios are tackled
depending on whether the training samples (image features)
are from the same (positive) or different (negative) classes.
For the negative samples (c 6= s), the projection of ps on the
correct semantic embedding es is maximized while its pro-
jection on the incorrect semantic embedding sc is minimized.
For the positive samples (c = s), our proposed formulation
directs the projection on the correct semantic embedding es
to be higher than the average response of projections on
the incorrect semantic embeddings. In both cases, 〈ps, es〉 is
constrained to produce a high response. Our loss formulation
is motivated by [58], with notable differences such as the class-
wise optimization, explicit handling of positive samples and
the extension of their ranking loss for image tagging to the
ZSL problem. Moreover, the loss of [58] considers a single
principal direction for all possible possible tags in the multi-
label annotation task whereas our CAPD is specialized to
assign a single label for zero-shot recognition.

We optimize Eq. 2 by Stochastic Gradient Descent to obtain
Ws for each seen class. Note that, ps = WT

s xmc in the above
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further apart.

cost function, thus for any sample xmc , ps changes when Ws is
updated at each training iteration. Also, the learning process
of Ws for each seen class is independent of other classes.
Therefore, all Ws can be learned jointly in a parallel fashion.
Once the training process is complete, given an input visual
feature xmc , we generate one CAPD ps for each seen class
using Eq. 1. As a result, PS = [p1...pS] ∈ Rd×S accumulates
the CAPDs of all the seen classes. Each CAPD is the mapped
version of the image feature on the class specific semantic
space. The CAPD vector and its corresponding semantic space
embedding vector point to similar direction if the input feature
belongs to the same class.

2) Learning CAPD for Unseen Classes: In ZSL settings,
the images of the unseen classes are not observed during the
training. For this reason, we cannot directly learn a weight
matrix to calculate pu using the same approach as ps. Instead,
for any unseen sample, we propose to approximate pu using
the seen CAPD of the same sample. Here, we consider a
bilinear map, in particular, a linear combination of the seen
class CAPDs to generate the CAPD of the unseen class u:

pu =

S∑
s=1

θs,ups = PSθu (3)

where, θu = [θ1,u...θS,u]
T ∈ RS is the coefficient vector that,

in a way, aggregates the knowledge of seen classes into the
unseen one. The computation of θu is subject to the relation
between CAPDs and semantic embeddings of classes. We
detail our approach to approximate θu below.

Metric Learning on CAPDs: The CAPDs reside in the
semantic embedding space. In this space, we learn a distance
metric to better model the similarities and dissimilarities
among the CAPDs. To this end, we assemble the sets of similar
A and dissimilar Ā pairs of CAPDs that correspond to the
pairs of training samples belonging to the same and different
seen classes, respectively. Our goal is to learn a distance metric
dM such that the similar CAPDs are clustered together and the

dissimilar ones are mapped further apart. We minimize the
following objective which maximizes the squared distances
between the minimally separated dissimilar pairs:

max
M

min
(i,j)∈Ā

d2M(pi,pj) s.t.
∑

(i,j)∈A

d2M(pi,pj) ≤ 1 (4)

where dM =
√
(pi − pj)TM(pi − pj) is the Mahalanobis

distance metric [54]. After training, the most confusing dis-
similar CAPD pairs are pulled apart while the similar CAPDs
are clustered together by learning an optimal distance matrix
M. Moreover, as metric learning is done on the semantic space
it can help to measure the seen-unseen relation.

Our intuition is that, given a learning metric M in the
semantic embedding space, the relation between the semantic
label embeddings of the seen es and the unseen classes eu
is analogous to that of their principal directions. Since the
semantic label embedding of unseen classes are available,
we can estimate their relation with the seen classes. For
simplicity, we consider a linear combination of semantic space
embeddings:

êu =

S∑
s=1

αs,ues = ESαu (5)

where, êu is the approximated semantic embedding of
eu corresponding to unseen class u. We compute αu =
[α1,u...αS,u]

T ∈ RS by solving:

min
αu

(êu − eu)
TM(êu − eu) +

λu
2
‖ αu ‖22 (6)

where λu is a regularization parameter which is set via cross
validation.

As we mentioned above, using the learned metric M, the
relationship between the seen-unseen semantic embeddings
αu is analogous to the relationship between the seen-unseen
CAPDs θu, thus θu ≈ αu. Here, M acts as a bridge between
visual features and their corresponding class semantics. For
example, ‘giraffe’ is among top 5 close animals of ‘deer’
in semantic space but after considering the metric M ‘cow’
becomes closer than ‘giraffe’ because of its visual similarity
with deer. In Fig. 3, we highlight this behavior by calculating
average Euclidean distance (before and after applying M) of
top 5 similar and dissimilar classes. Essentially, metric learn-
ing brings visually and semantically similar classes together
while pulls dissimilar classes further apart. Accordingly, we
approximate the unseen CAPDs with seen CAPDs by rewriting
Eq. 3 as:

pu ≈ PSαu. (7)

We derive a CAPD, pu for each unseen class using Eq. 7. In
test stage of ZSL setting, we assign a given image feature x
to an unseen class using the maximum projection response:

ŷ = argmax
u
〈pu, eu〉 (8)
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B. Reduced Set Description of Unseen Classes

When describing a novel object, we often resort to relating
it with the similar known object categories. It is intuitive that
a subset of the known objects is sufficient for describing an
unknown one.

We incorporate this observation by proposing a modified
version of Eq. 5. The term αu contains the contribution
of each seen class to describe the unseen class u ∈ y U

by reconstructing eu using all seen classes semantic label
embeddings. We reconstruct eu by only a small number of
seen classes (N < S). These N seen classes can be selected
using any similarity measure (Mahalanobis distance in our
case). The reconstruction of eu becomes:

êu =

N∑
i=1

βi,uei (9)

Here, βu ∈ RN is the coefficients of selected seen classes.
We learn βu by a similar minimization objective as in the
Eq. 6. By replacing αu with βu in the Eq. 7, it is possible
to compute the CAPD of unseen class u using a reduced set
of seen classes. Such CAPDs are shown in Fig. 1 in dashed
lines.

Appropriate Choice of Seen Classes: In Fig. 4, we show
comparisons when different approaches are used to select
a subset of seen classes to describe the unseen ones. The
results illustrate that the seen classes having the semantic
space embeddings close to that of a particular unseen class are
more suitable to describe it. Here, we considered N nearest
neighbors of the unseen class semantic vector eu using the
Mahalanobis distance. Using a less number of seen classes is
inspired by the work Norouzi et al. [33] where they applied
convex combination of selected semantic embedding vector
based on outputs of the softmax classifier of corresponding
seen classes. The main drawback of their approach is that
the softmax classifier output does not take the semantic
embeddings into consideration, which can ignore important
features when describing the unseen class. Instead, our method
performs an independent optimization (Eq. 6) that jointly con-
siders image feature, CAPD and semantic embedding relations
via the learned metric M. As a result, the proposed strategy is
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Fig. 5: PDF of distances using the normal distribution with
zero mean and a unit standard deviation for each unseen class.
(GoogLeNet features and the word2vec semantic embedding
for AwA dataset)

better able to determine the optimal combination of selected
seen semantic embeddings (see Sec. V-B).

Automatic N Selection for Each Unseen Class: While [33]
proposed a fixed number of selected seen classes to describe
an unseen class, we suggest a novel technique to automatically
select the number of most informative seen classes (N).

First, for an unseen class semantic embedding eu, we
calculate the Mahalanobis distances (using learned metric M)
from eu to all es and perform mean normalization. Then, we
apply kernel density estimation to obtain a Probability Density
Function (PDF) for the normalized distances. Fig. 5 shows the
PDF for each unseen semantic embedding vector of the AwA
dataset. For a specific unseen class, the number of seen classes
with the highest probability score is assigned as the value of N.
Unlike [33], this scheme allows choosing a variable number
of the seen classes for different unseen classes. In Sec. V-A
of this paper, we have reported an estimation of the average
numbers of seen classes selected for the tested unseen classes.

Sparsity: Using a reduced number of the seen classes in
Eq. 9 indirectly imposes sparsity in the coefficient vector
αu in the Eq. 5. This is similar to Lasso (`1) regularization
(instead of `2 regularization) in the loss function in Eq. 6.
We observe that the above selection solution is more efficient
and accurate than the Lasso-based regularization. This is
because the proposed solution is based on the intuition that the
semantic embedding of an unseen class can be described by
closely embedded seen classes. In contrast, Lasso is a general
approach and do not consider any domain specific semantic
knowledge.

Having discussed the ZSL setting in Secs. III-A and III-B
above, we present the extension of CAPDs to the GZSL
problem.

C. Generalized Zero-shot Learning

ZSL setting considers only unseen class images during the
test phase. This setting is less realistic, because new images
can belong to both seen and unseen classes. To address this
scenario, generalized ZSL (GZSL) has recently been intro-
duced as a new line of investigation [51], [9]. Recent works
suggest that most of the existing ZSL approaches fail to cope
up with the GZSL setting. When both seen and unseen classes
come into consideration for prediction, the prediction score
function becomes highly biased towards seen classes because
only seen classes were used for training. As a result, majority
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of the unseen test instances are misclassified as seen examples.
In other words, this bias notably decreases the classification
accuracy on unseen classes while maintains relatively high
accuracy on seen classes. To solve this problem, available
techniques attempts to estimate the prior probability of an
input belonging to either a seen or an unseen class [43], [9].
However, this scheme heavily depends on the original data
distribution used for training.

Considering the above aspects, a competent GZSL method
should possess the following properties:
• Equilibrium: It should be able to balance seen-unseen

diversity so that the performances of both seen and
unseen classes achieve a balance.

• Reduced data dependency: It should not receive any
supervision signal (obtained from either training or vali-
dation set images) determining the likelihood of an input
belonging to seen or unseen class.

• Consistency: It should retain its performance on the
conventional ZSL setting as well.

In this work, we propose a novel GZSL algorithm to ade-
quately address these challenges.

Generalized CAPD for Seen Class: In Sec. III-A, we
described the CAPD of seen classes for a given input image
is PS = [p1...pS]. Each seen CAPDs is obtained using the
class-wise learned classifier matrix Ws. It is obvious that
each Ws is biased to seen class ‘s’. For the same reason,
each ps is also biased to class ‘s’. Since there was no seen
instance available during the testing phase in conventional ZSL
setting, seen CAPDs were not used for prediction (Eq. 8).
Therefore, the inherent bias of seen CAPDs was not affecting
ZSL performance. In contrast, for GZSL settings, all seen and
unseen CAPDs are considered for prediction. Thus, biased
seen CAPDs will dominate as expected and significantly affect
the unseen class performances. To solve this problem, we
propose to develop a generalized version of each seen CAPD
as follows:

pgs = PSγs, (10)

where, γs denotes a parameter vector for seen class ‘s’.
Proposed Objective Function: Our hypothesis is that the

bias towards seen classes that causes high scores during
prediction can be resolved using the semantic information of
classes. To elaborate, γs is computed solely in semantic label
embedding domain and later applied to generalize CAPD of
seen class instances. We minimize the squared difference of
two complementary losses to obtain γ = [γ1...γS] ∈ RS×S, as:

min
γ
‖

mean generalized seen loss︷ ︸︸ ︷
1

S

S∑
s=1

(ESγs − es)
2−

mean unseen reconst. loss︷ ︸︸ ︷
1

U

U∑
u=1

(ESαu − eu)
2 ‖22

+
λγ
2

S∑
s=1

‖ γs ‖22, (11)

where λγ is the regularization weight set using cross valida-
tion.

The objective function in Eq. 11 minimizes the squared
difference between the mean of two loss components. The first

component is the mean generalized seen loss which measures
the reconstruction accuracy of seen class embedding es using
the generalization parameters γs. The second component mea-
sures the reconstruction accuracy of unseen class embedding
eu from seen classes. By reducing the squared difference
between these two components, we indirectly balance the
distribution of seen-unseen diversity which effectively prevents
the domination of seen classes in the GZSL setting (the
‘equilibrium’ property). The interesting fact is that our pro-
posed generalization mechanism does not directly use CAPDs,
yet it is strong enough to stabilize the CAPD of different
classes during the prediction stage (the ‘less data dependence’
property). Furthermore, the formulation does not affect the
computation of unseen CAPDs i.e. pu which preserves the
conventional ZSL performance (the ‘consistency’ property).

Prediction: For a given image feature x, we can derive
generalized CAPDs of seen classes pgs and CAPD of unseen
classes pu using the description in Sec. III-B. In test stage,
we consider both the projection responses of seen and unseen
classes to predict a class.

ŷ = argmax
l∈y
〈pl,vl〉 (12)

where, pl ∈ pu ∪ pgs and vl ∈ es ∪ eu.

D. Few-shot Learning

The few-shot learning (FSL) is a natural extension of
ZSL. While ZSL considers no instance of an unseen class
during training, FSL relaxes this restriction by allowing a few
instances of an unseen class as labeled during the training
process. Another variant of FSL is called one-shot learning
(OSL), which allows exactly one instance of an unseen class
(instead of few) as labeled during training. An ideal ZSL
approach should be able to benefit from the labeled data
for unseen classes under F/OSL settings. In this section, we
explain how our approach is easily adaptable to FSL.

Updated CAPD for Unseen Class. In ZSL setting, for
a given input image feature, we can calculate the unseen
CAPD, pu for every unseen class ‘u’. Now, in the FSL setting,
we optimally use the newly available labeled unseen data
to update pu. To this end, new classifiers Wu are learned
for each unseen class ‘u’ similar to the case of seen classes
(Sec. III-A). For a given image feature, x, we can calculate
unseen CAPDs by p′u = WT

ux. These CAPDs are fused with
pu, which were derived from the linear combination of seen
CAPDs (Eq. 7). The updated CAPD for unseen class ‘u’ is
represented as pfu, given by:

pfu = δupu + δ′up
′
u, s.t. δu + δ′u = 1 (13)

where, δu and δ′u are the contribution of the respective
CAPDs to form an updated CAPD of an unseen class. During
prediction, we use pfu instead of pu in Eq. 8.

Calculation of δu and δ′u: The weights δu and δ′u are set
using training data such that they encode the reliability of pu
and p′u respectively. Recall that our prediction is based on the
strength of projection of a CAPD on the semantic embedding
vector. Therefore, we need to maximize the correspondence
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between a CAPD and the correct semantic embedding vector
i.e., a high 〈pu, eu〉. The unseen CAPD among pu and p′u
that provides higher projection response with uth unseen class
semantic vector gets a strong weight during the combination
in Eq. 13.

We derive pu and p′u for each training image feature,
x ∈ XS = {Xs : s ∈ y S}, and the classification matrix of
unseen class ‘u’. Then, we find the summation of maximum
projection response of the CAPD (either pu or p′u) with its
respective semantic vector. This maximum projection response
finds the response of most similar (or confusing) unseen class
of any image. The summation of this response across all
training images can estimate the overall quality of CAPDs
from the two sources. Finally, we normalize the summations
to get δu and δ′u as follows:

δu =

∑
x∈XS maxu〈pu, eu〉∑

x∈XS maxu〈pu, eu〉+
∑

x∈XS maxu〈p′u, eu〉
,

δ′u =

∑
x∈XS maxu〈p′u, eu〉∑

x∈XS maxu〈pu, eu〉+
∑

x∈XS maxu〈p′u, eu〉
.

(14)

In Fig. 9, we further elaborate the overall effect of δu and δ′u
in FSL while using different semantic information.

E. Overall pipeline

The overall learning of this unified approach is summarized
in Algorithm 1. The training of all settings (i.e., ZSL, GZSL
and F/OSL) consists of four main steps. First, the calculation
of CAPD is performed for seen classes for the case of ZSL
and GZSL (ps) and also for unseen classes for F/OSL settings
(p′u). Second, metric learning is performed to link the semantic
and visual domains using M. Third, the relationship between
seen and unseen semantic embeddings is modeled as αu for
all seen classes and βu for the reduced set of closely related
seen classes. For the specific case of GZSL, γs is additionally
learned to balance the contribution from seen and unseen
CAPDs. The test side optimizations to learn parameters αu, βu
and γs is required to be done only once before starting the test
and does not take much computation as the total number of
classes are not many (around 1500). Fourth, the parameters
learned in the previous stage are used to obtain unseen CAPDs
for the case of ZSL and F/OSL and to further re-balance
the seen CAPDs for the case of GZSL. Finally, the CAPD
projections are used to predict the output class.

IV. COMPARISON WITH RELATED WORK

A. ZSL Settings

Our method has similarities with two streams of previous
efforts on ZSL. Here, we discuss the significant differences.

In terms of class-specific learning, a number of recent
studies [7], [33] report competitive performances when they
rely on handcrafted attributes (‘supervised’ source). However,
we observe that these methods fail when they use ‘unsuper-
vised’ source of semantics (e.g. word2vec and GloVe). The
underlying reason is that they do not leverage on the semantic
information during the training of the classifiers. Moreover,

Algorithm 1: Learning procedure for proposed model
Input: Image features {Xs}S1 , {Xu}U1 , Semantic

embeddings ES , EU

Training Phase
for s = 1 : S do

1 Ws ← learn class specific models using Eq. 2
2 ps ← calculate CAPD of seen class s

if F/OSL then
for u = 1 : U do

3 Wu ← learn class specific models using Eq. 2
4 p′u ← calculate CAPD of unseen class u

5 M← learn metric space using Eq. 4
Testing Phase
for u = 1 : U do

6 αu/βu ← learn the relationship between seen-unseen
embeddings using Eq. 6

7 pu ← calculate CAPD of unseen class u
if F/OSL then

8 Calculate δu and δ′u using Eq. 14
9 pfu ← fuse p′u and pu using Eq. 13

if GZSL then
for s = 1 : S do

10 γs ← minimize cost function in Eq. 11 to learn
generalization parameters γ

11 pgs ← compute updated seen CAPDs using Eq. 10

12 Predict seen or unseen class using Eq. 12

else
13 Predict unseen class using Eq. 8

Return: Class decision ŷ

the attribute set is less noisy than unsupervised source of
semantics. Although our work follows the same spirit, the main
novelty lies in using the semantic embedding vectors explicitly
during the learning phase for each individual class. This helps
the classifiers to easily adapt themselves to a wide variety of
semantic information sources, e.g. attributes, word2vec and
GloVe.

Another body of work [50], [4] considers semantic in-
formation during the training process. In the same vein,
[59] designed max-margin based loss formulation considering
semantic information, while [60] maximizes the likelihood
between latent embeddings of visual and semantic concepts.
However, these approaches do not take the benefits of class-
specific learning. Using a single classifier, they compute a
global projection. Generalizing all classes by one projection
is restrictive and it fails to encompass subtle variations among
classes. These approaches do not leverage the flexibility of
suppressing irrelevant seen classes while describing an unseen
class. Besides, the semantic label embeddings are subject to
tuning based on the visual image features. As they cannot
learn any metric on semantic embedding space, these methods
fail to work accurately across different semantic embeddings.
Another problem is that these kind of approaches do not extend
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well for generalized zero-shot and few shot scenario because
the training easily gets biased to seen classes which makes
difficult to generalize [51] and cannot utilize newly available
test data in few-shot settings. In contrast, by taking the benefits
of class-specific learning, our approach computes CAPD for
each classifier that can significantly enhance the learned dis-
criminative information. In addition, our approach describes
the unseen class with automatically selected informative seen
classes and learns a metric on the semantic embedding space
to further fine-tune the semantic label information. Moreover,
our approach can work simultaneously in GZSL and O/FSL
settings.

In terms of relating seen and unseen by a linear combination
our method has similarity with some previous efforts [48],
[56], [5], [10]. [48], [56] applied the combination to convert
ZSL problem to a supervised learning problem by generating
virtual or synthesized data. For doing so, these approaches
required the names of unseen classes during training time
which makes unseen pre-defined. [5], [10] used combination
of both attribute vector and word vector together in training
to relate seen and unseen in semantic space. However, these
approaches do not require attribute vectors during testing. It
reduces the costly annotation of unseen classes in testing but
still utilize costly manual labeling of attributes of seen classes
during training. In contrast, our method utilize the seen-unseen
combination in an unique way to solve ZSL, GZSL and O/FSL
problem. We do not use the concept of attributes to improve
the performance of word vectors. Therefore, the unsupervised
version of our work is not depended on strong supervision
during training.

Many traditional methods focus ZSL but do not perform
well in GZSL (See Table VIII, IX and X). Some other
methods need to modify ZSL to trusductive [27] or domain
adaptation [52] settings to achieve generalization. Again, many
approaches perform FSL but do not have the extendibility to
zero-shot settings [41], [13]. Moreover, some approaches seem
to overfit on small scale dataset, specific image features, and
specific semantic vector i.e. supervised-attributes ([59], [60])
or unsupervised word2vec/Glove ([4], [50]). Our method, on
the other hand, consistently provides improved performance
across all the different semantic information and problem
settings.

B. GZSL settings

We automatically balance the diversity of seen-unseen
classes in an unsupervised way, without strongly relying on
CAPD or image visual feature. Previous efforts used a su-
pervision mechanism either from training or validation image
data to determine if any input image belongs to a seen or
an unseen class. Chao et al. [9] proposed a calibration based
approach to rescale the seen scores and evaluated using Area
Under Seen-Unseen accuracy Curve (AUSUC) [7], [52]. As
prediction scores of GZSL are strongly biased to seen classes,
they proposed to calibrate seen scores by adding a constant
negative bias termed as a calibration factor. This factor is
calculated on a validation set and works as a prior likelihood of
a data point being from a seen/unseen class. The drawback of

such an approach is that it acts as a post-processing mechanism
applied at the decision making stage, not dealing with the
generalization at the basic algorithmic level.

Another alternative work, CMT method [43] incorporates
a novelty detection approach which estimates the outlier
probability of an input image. Again, the outlier probability
is determined using training images which provides an extra
image-based supervision to GZSL model. In contrary, our
method considers the seen-unseen biasness in the semantic
space at the algorithmic level. The overall prediction scores
are then balanced to remove the inherent biasness towards the
seen classes. We show that such an approach can be useful for
both supervised attributes and unsupervised word2vec/GloVe
as semantic embedding information. As our approach does
not follow the post-processing strategy like [9], [7], [52],
we do not evaluate our work with AUSUC. In line with
the recommendation in [50], we use harmonic mean based
approach for GZSL evaluation.

V. EXPERIMENTS

Benchmark Datasets: We use four standard datasets for
our experiments; aPascal & aYahoo (aPY) [12], Animals
with Attributes (AwA) [25], SUN attributes (SUN) [35], and
Caltech-UCSD Birds (CUB) [47]. The statistics of these
datasets are given in Table I. We follow the standard protocols
(seen/unseen splits of classes) used in the literature. To be
specific, we have exactly followed [50] for AwA and CUB
datasets, [59], [60] for aPY and SUN-10 and [7] for SUN. To
increase the complexity of GZSL task for SUN, we used a
different of seen/unseen split introduced in [7]. In line with
the standard protocol, the test images correspond to only
unseen classes in ZSL settings. In Few/One-shot settings, we
randomly choose three/one instances per unseen class to use in
training as labeled examples. Again, in GZSL settings, we per-
form a 80-20% split of each seen class instances; 80% portion
is used in training and rest 20% for testing in conjunction with
all unseen test data. We report the average results of 10 random
trails for Few/One shot or GZSL settings. In a recent work,
Xian et al. [51] proposed a different seen/unseen split for the
above mentioned four datasets. We perform GZSL experiments
on that setting as well. We conduct large scale experiment for
ZSL problem on ImageNet (ILSVRC) 2012/2010 dataset with
the setting of [16], [57]. The training and testing are done on
the images of 1K class of ILSVRC 2012 and non-overlapped
360 classes of ILSVRC 2010 dataset respectively. It makes
1.2M images in training from ILSVRC 2012 and 54K images
from ILSVRC 2010.

Image Features: Previous ZSL approaches use both shal-
low (SIFT, PHOG, Fisher Vector, color histogram) and deep
features [4], [7], [37]. As reported repeatedly, deep features
outperform shallow features by a significant margin [7]. For
this reason, we consider only deep features from the pretrained
GoogLeNet [44] and VGG-verydeep-19 [42] models for our
comparisons. For feature extraction from GoogLeNet and
VGG-verydeep-19, we exactly follow Changpinyo et al. [7]
and Zhang et al. [59], respectively. The dimension of vi-
sual features extracted from GoogLeNet is 1024, and VGG-
verydeep-19 is 4096. While using the recent Xian et al. [51]
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Dataset seen/unseen # image # train # test
aPY[12] 20/12 15,339 12,695 2,644
AwA[25] 40/10 30,475 24,518 6,180
SUN-10[35] 707/10 14,340 14,140 200
SUN[35] 645/72 14,340 12,900 1,440
CUB[47] 150/50 11,788 8,855 2,933
ImageNet[40] 1000/360 1.25M 1.2M 54K

TABLE I: Statistics of the benchmark datasets.

seen/unseen split, we use the same 2048-dim features from
top-layer pooling units of the 101-layered ResNet [20] for
a fair comparison. For large scale experiment on ILSVRC
2012/2010 dataset we use GoogleNet features.

Semantic Space Embeddings: We analyze both supervised
and unsupervised settings of ZSL. For the supervised case,
we use 64, 85, 102 and 312 dimensional continuous valued
semantic attributes for aPY, AwA, SUN, and CUB datasets,
respectively. We dismiss the binary version of these attributes
since [7] showed that continuous attributes are more useful.
For the unsupervised case, we test our approach on AwA and
CUB datasets. We consider both word vector embeddings i.e.,
word2vec (w2v) [31], [30] and GloVe (glo) [36]. We use
`2 normalized 400-dimensional word vectors, similar to [50].
For ILSVRC 2012 and 2010 classes we use 500 dimensional
word2vec vectors.

Evaluation Metrics: This line of investigation naturally
applies to two different tasks; recognition and retrieval [51],
[28], [45]. We measure the recognition performance by the
top-1 accuracy, and the retrieval performance by the mean
average precision (mAP). The top-1 accuracy is the percentage
of the estimated labels (the ones with the highest scores)
that match the correct labels. The mean average precision
is computed over the precision scores of the test classes.
In addition, [51] proposed to use Harmonic Mean (HM) of
the accuracies of seen and unseen classes (accs and accu
respectively) to evaluate GZSL performance, as follows:

HM =
2× accs × accu
accs + accu

.

The main motivation of using HM is its ability to estimate
the inherent biasness of any method towards seen classes.
If a method is too biased to seen classes then accs will be
very high compared to accu and harmonic mean based GZSL
performance drops down significantly [51], [9].

Implementation Details: We initialize each classifier Ws

from a N(0, 1k ) distribution where k is the dimension of
the image feature [50]. We use a constant learning rate over
100 iterations in training of each class: 0.001 for AwA and
ImageNet, and 0.005 for aPY, SUN and CUB datasets. For
each dataset, we select the value of parameters λs, λu and
λγ using a validation set. We use the same value of λs, λu
and λγ across all seen and unseen classes in the optimization
task (Eq. 2 and 6 respectively). To choose the validation
dataset, we randomly divide all seen classes into two groups
80%/20%, and use 20% group as the unseen set (no test data
is used during validation). Based on the average performance

Using G aPY AwA CUB SUN ILSVRC
Total seen 20 40 150 717 1000
Reduced-att 10.17 20.00 74.70 344.40 -
Reduced-w2v - 21.20 70.96 - 134.89
Reduced-glo - 19.70 74.14 - -

TABLE II: Average number of the seen classes for reduced
set case. Our method automatically selects an optimal number
of the nearest seen classes to describe an unseen class.

of five different random validation sets, we choose the optimal
parameter values. We notice that λs has little effect while
learning Eq. 2, thus validation really helps to choose word
vectors specific tuning parameters λu and λγ . We choose a
value for those parameters within 10−4, 10−3, 10−2, 0.1, 1, 10.
In Fig. 7, we illustrate a validation experiment to choose a
value for λu for different semantic vectors of AwA and CUB
dataset. Our validation performances are different than our test
performance because of the averaging of different validation
seen/unseen splits of training data. For the metric learning in
Eq. 4, we use the standard implementation of [54].

A. Results for Reduced Set

In the reduced set experiment as describe in Sec. III-B, for
each unseen class, we select four subsets of the seen classes
having one-third of the total number. First three subsets contain
the farthest away, mid-range, and nearest seen classes of each
unseen class in the semantic embedding space, and the last
one is the random selection. For all subsets, we determine
the proximity of the unseen classes by Mahalanobis distance
with learned metric M. In our experiments, a different unseen
class will get a different set of seen classes to describe it. We
report the top-1 accuracy on test data of those four subsets
in Fig. 4. We observe that only one-third of seen classes
closest to each unseen class perform the best among the four
subsets. The farthest away, mid-range and randomly selected
subsets fail to describe an unseen class with high accuracy.
This experiment suggest that using only some nearest seen
classes located in the semantic embedding space can efficiently
approximate an unseen class embedding. The nearest case
experiment performances are not the best accuracies reported
in the paper because we consider an automatic seen class
selection process in our final experiments.

From the discussion in Sec. III-B, we also know that for
different unseen classes our method automatically chooses
different sets of useful seen classes. The numbers of seen
classes in those sets can be different. In Table II, we report the
average number of seen classes in the sets. One can observe
that the average number of the seen classes required is around
50% across different datasets. This means, in general, only
half of the total seen classes are useful to describe one unseen
class. Such a reduced set description of the unseen class
not only maintains the best performance but also reduces the
complexity of the sparse representation of each unseen class.
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Method aPY AwA SUN CUB
V G V G V G V G

Ours [all-seen] 45.84 50.64 73.19 64.74 84.5 87.00 39.86 42.31
Ours [reduced-Lasso] 36.54 37.22 74.16 75.76 78.50 84.50 37.47 37.37
Ours [reduced-auto w/o M] 46.90 42.78 76.42 77.51 85.00 89.50 42.34 41.36
Ours [reduced-auto with M] 54.69 55.07 78.53 80.43 85.00 79.00 43.01 45.31

TABLE III: Top-1
accuracy (in %) of
various versions of
CAPD using attributes.
V: VGG-verydeep-19,
G: GoogLeNet features.
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Fig. 6: Confusion matrices on AwA dataset using GoogLeNet
as image features and the attributes as semantic space vectors.
Left: Xian et al. [50]. Right: CAPD. As seen, CAPD provide
better overall and class-wise performance.
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Fig. 7: Validation experiment for choosing λu

B. Benchmark Comparisons

We discuss benchmark performances of ZSL recognition
and retrieval for both supervised (attributes) and unsupervised
semantics (word2vec or GloVe).

1) Results for ZSL with Supervised Attributes1: We present
the top-1 ZSL accuracy results of different versions of our
method in Table III. In the all-seen case, we have considered
all seen classes to describe an unseen class (Eq. 5). In Lasso,
we report the performance using Lasso regularization in place
of `2 in Eq. 6. The results demonstrate that using a reduced
number of seen classes with (M 6= I) or without (M = I)
metric learning to describe an individual unseen class can
improve ZSL accuracy. Performance with the metric learning
outperforms all other variations of the method in almost
every cases except SUN dataset because the implementation
of metric learning uses same number images per class for
each dataset. However, SUN has a large number of classes
but contains less number of images per class. In Table IV,
we compare the overall top-1 accuracy of our method (after

1For fairness, inductive test performances from DSRL [53], MFMR [52]
and DMaP [27] are reported in the tables.

Using V aPY AwA SUN CUB
Lampert’14 [26] 38.16 57.23 72.00 31.40
ESZSL’15 [39] 24.22 75.32 82.10 -
SSE-ReLU’15 [59] 46.23 76.33 82.50 30.41
Zhang’16 [60] 50.35 80.46 83.30 42.11
Bucher’16 [28] 53.15 77.32 84.41 43.29
DSRL’17[53] 56.29 77.38 82.00 50.26
MFMR’17[52] 48.20 79.80 84.00 47.70
Ours 54.69 78.53 85.00 43.33
Using G aPY AwA SUN CUB
Lampert’14 [26] 37.10 59.50 - -
Akata’15 [4] - 66.70 - 50.10
Changpinyo’16 [7] - 72.90 - 45.85
Xian’16 [50] - 72.50 - 45.60
SCoRe’17[32] - 78.30 - 58.40
MFMR’17[52] 46.40 76.60 81.50 46.20
EXEM’17[8] - 77.20 - 59.80
Ours 55.07 80.83 87.00 45.31

TABLE IV: Supervised ZSL top-1 accuracy (in %) on four
standard datasets. V: VGG-verydeep-19 and G: GoogLeNet
image features. Results are from the original papers. Only very
recent SOTA methods are considered for comparison.

Using V aPY AwA SUN CUB
SSE-INT’15 [59] 15.43 46.25 58.94 4.69
SSE-ReLU’15 [59] 14.09 42.60 44.55 3.70
Bucher’16 [28] 36.92 68.10 52.68 25.33
Zhang’16 [60] 38.30 67.66 80.10 29.15
MFMR’17 [52] 45.60 70.80 77.40 30.60
Ours 43.85 72.87 80.20 36.60

TABLE V: Supervised ZSL retrieval performance (in mAP).
V: VGG-verydeep-19 image features.

using validated parameter settings) with many recent ZSL
approaches. Our approach outperforms other methods in most
of the settings. In Fig. 6, we show confusion matrices of a
recent approach [50] and ours. Similar to recognition, ZSL
can also perform retrieval task. ZSL retrieval is to search
images of unseen classes using their class label embeddings.
We test the attributes set as a query to retrieve test images. In
Table V, we compare our ZSL retrieval performance with four
recent approaches on four datasets. Our approach performs
consistently better or comparable to state-of-the-art methods.

2) Results for ZSL with Unsupervised Semantics: ZSL with
pretrained word vectors [31], [36] as sematnic embedding is
the focus of attention nowadays since it is difficult to generate
manually annotated attribute sets in real-world applications.
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Semantic:word2vec AwA CUB
V G V G

Akata’15 [4] - 51.20 - 28.40
Xian’16 [50] - 61.10 - 31.80
Akata’16 [1] - - 33.90 -
Changpinyo’16 [7] - 57.50 - -
SCoRe’17[32] - 60.88 - 31.51
DMaP-I’17[27] - - - 26.28
Ours 66.26 66.89 34.40 32.42

Semantic: GloVe AwA CUB
V G V G

Akata’15 [4] - 58.80 - 24.20
Xian’16 [50] - 62.90 - 32.50
DMaP-I’17[27] - - - 23.69
Ours 62.01 64.73 32.08 29.66

TABLE VI: Unsupervised ZSL performance in top-1 accuracy.
V: VGG-verydeep-19, G: GoogLeNet image features. Only
very recent SOTA papers are considered for comparison.
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Xian et al.(2016) AUC=47.06
Changpinyo et al.(2016) AUC=41.40
Ours(lasso) AUC = 53.92
Ours AUC=55.97

Fig. 8: Average precision recall curve of all test classes of
AwA dataset. GoogLeNet and word2vec are used as image
feature and semantic label embedding respectively.

Therefore, the ZSL research is pushing forward to eliminate
dependency on manually assigned attributes [1], [5], [23], [37],
[50]. In line with this view, we adapt our method to unsuper-
vised settings by replacing attribute set with word2vec [31]
and GloVe [36] vectors. Our results on two standard datasets,
AwA and CUB, are reported in Table VI. We compare with
very recent approaches keeping same experimental protocol.
One can notice that our approach performs consistently in the
unsupervised settings as well in a wide variety of feature and
semantic embedding combinations. We provide the average
precision-recall curves of ours and two very recent approaches
using word2vec embeddings in Fig. 8. As shown, our method
is superior to others by a significant margin.

Our observation is that ZSL attains better performance
with supervised attributes as semantics than unsupervised ones
because the semantic descriptors (word2vec and GloVe) are
often noisy and cannot describe a class as good as attributes.
To address this performance gap, some works investigate
ZSL with transductive learning [52], [27], domain adaptation
techniques [11], [23], and class attribute associations [1], [5].
In our study, we consider these improvements as future work.

3) Large-scale ZSL with ILSVRC 2012/2010: To show

Method hit@1 hit@5
ConSE[33] 7.8 15.5
DeViSE[15] 5.2 12.8
AMP [17] 6.1 13.1
SS-Voc [16] 9.5 16.8
Zhang’17 [57] 11.0 25.7
Ours 10.4 23.6

TABLE VII: Comparison on ILSVRC 2012/2010

scalability to large-scale datasets, we evaluate our method on
ImageNet for ZSL task. In literature, there are two different
standard setups: (1) 800/200 seen/unseen split using only
ILSVRC 2010, and (2) 1000/360 split using both ILSVRC
2012/2010. We adopt the second setting because of its larger-
scale, difficulty and diversity between train and test sets.
Results are reported in Table VII in terms of hit@1 and hit@5
rates. Our approach outperforms several previous techniques,
but performs slightly lower compared to the recent [57]. We
note that while ours is a stage-wise learning approach, [57]
propose an end-to-end method which specifically addresses
the hubness problem in large-scale ZSL tasks. Our method
achieves performance close to [57] without directly addressing
the hubness issue. In future, we will explore the possibility of
extending our approach to deal with this problem.

4) Results for GZSL: GZSL is a more realistic scenario
than conventional ZSL because GZSL setting tests a method
with not only the unseen class instances but also seen class
instances. In this paper, we extend our method to work on
GZSL setting as well. Although GZSL is a more interesting
problem than ZSL, usually standard ZSL methods do not
report any results on GZSL in the original papers. However,
recently a few efforts have been published to establish the
standard testing protocol for GZSL [51], [9]. In the current
work, we test our GZSL method on both testing protocols of
[51] and [9].

Xian et al. [51] tested 10 ZSL methods with a new seen-
unseen split of datasets ensuring unseen classes are not
used during pre-training of deep network (e.g., GoogLeNet,
ResNet) which was used to extract image features. They
used ResNet as image features and attributes as semantic
embedding for SUN, CUB, AwA and aPY dataset. With
this exact settings, in Table VIII, we compare our GZSL
results with the reported results of [51]. In terms of HM
measure, our results consistently outperform other methods
by a large margin. Moreover, our method balances the seen-
unseen diversity in a robust manner which helps to achieve the
best unseen class accuracy (accu). In contrast, seen accuracy
(accu) moves down because of the trade-off while balancing
the bias towards seen classes. In the last row, we report
the ZSL performance of this experiment where only unseen
class test instances are classified to only unseen classes (not
considering both seen-unseen classes together). This accuracy
is actually an oracle case (upper bound) for accu of GZSL case
of our method. This is because, if an instance is misclassified
in the ZSL case, it must be misclassified in the GZSL case
too. Another important point to note is that the parameters of
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Top1 SUN CUB AWA aPY
ResNet HM accs accu HM accs accu HM accs accu HM accs accu
DAP[26] 7.2 25.1 4.2 3.3 67.9 1.7 0.0 88.7 0.0 9.0 78.3 4.8
CONSE[33] 11.6 39.9 6.8 3.1 72.2 1.6 0.8 88.6 0.4 0.0 91.2 0.0
CMT[43] 13.3 28.0 8.7 8.7 60.1 4.7 15.3 86.9 8.4 19.0 74.2 10.9
SSE[59] 4.0 36.4 2.1 14.4 46.9 8.5 12.9 80.5 7.0 0.4 78.9 0.2
LATEM[50] 19.5 28.8 14.7 24.0 57.3 15.2 13.3 71.7 7.3 0.2 73.0 0.1
ALE[3] 26.3 33.1 21.8 34.4 62.8 23.7 27.5 76.1 16.8 8.7 73.7 4.6
DEVISE[15] 20.9 27.4 16.9 32.8 53.0 23.8 22.4 68.7 13.4 9.2 76.9 4.9
SJE[4] 19.8 30.5 14.7 33.6 59.2 23.5 19.6 74.6 11.3 6.9 55.7 3.7
ESZSL[39] 15.8 27.9 11.0 21.0 63.8 12.6 12.1 75.6 6.6 4.6 70.1 2.4
SYNC[7] 13.4 43.3 7.9 19.8 70.9 11.5 16.2 87.3 8.9 13.3 66.6 7.4
Our GZSL 31.3 27.8 35.8 43.3 41.7 44.9 54.5 68.6 45.2 37.0 59.5 26.8
Our ZSL 49.7 53.8 52.6 39.3

TABLE VIII: GZSL performance comparison with other established methods in the literature. The experiment setting is exactly
same as in [51]. Image features are taken from ResNet and attributes are used as semantic information.

Top1:G AwA CUB
HM accs accu HM accs accu

DAP[26] 4.7 77.9 2.4 7.5 55.1 4.0
IAP[26] 3.3 76.8 1.7 2.0 69.4 1.0
ConSE[33] 16.9 75.9 9.5 3.5 69.9 1.8
SynC[7] 0.8 81.0 0.4 22.3 72.0 13.2
MFMR[52] 29.60 75.6 18.4 - - -
Our GZSL 50.8 43.2 61.7 29.5 23.4 39.9
Our ZSL 76.2 44.0

TABLE IX: GZSL performance comparison with the experi-
ment settings of [9]. Image features are taken from GoogLeNet
and attributes are used as semantic information.

Top1:Mean AwA CUB
att w2v att glo

DMaP[27] 17.23 6.44 13.55 2.07
Our GZSL 52.45 43.70 31.65 18.75

TABLE X: Comparison with a recent GZSL work DMaP[27]

our method are tuned for GZSL setting in this experiment.
Therefore, ZSL performance in the last row may increase if
one tunes parameters for the ZSL setting.

Chao et al. [9] experimented GZSL with standard seen-
unseen split used in ZSL literature. Keeping this split, they
kept random 80% seen class images for training and held
out the rest of 20% images for testing stage during GZSL.
We perform the same harmonic mean based evaluation like
previous setting. In Table IX, we compare our results with
the reported results in [9]. Using the same settings, we also
compare with two recent methods, MFMR [52] (Table IX)
and DMAP [27] (Table X). For the sake of comparison with
DMAP [27], we compare mean Top1 accuracy (not standard
though) instead of harmonic mean because accu and accs
are not reported separately in the [27]. Again, our method
performs consistently well across datasets. More results on
GZSL for AwA, CUB, SUN and aPY datasets are reported in
Table XII.

5) Results for FSL: As stated earlier, our method can easily
take the advantage when new unseen class instances become
available as labeled data for training. To test this scenario, in
FSL settings, we assume three instances of each unseen class
(randomly chosen) are available as labeled during training.
In Table XI, we report our results for FSL on AwA and
CUB dataset while using attribute, word2vec and GloVe as
semantic information. The compared methods, DeViSE [14]
and CMT[43], did not report FSL performance in the original
paper. But, [45] reimplemented the original work to adapt FSL.
The exact three instances of each unseen class used in [45]
are not publically available. However, to make our results
comparable with others, we report the average performance
of 10 random trails. Our method performs consistently better
than comparing methods except one case: mAP of CUB-
att (58.0 vs 58.5). Another observation from these results
is that the performance gap between unsupervised semantics
(like word2vec and GloVe) and supervised attribute semantics
is significantly reduced compared to ZSL settings where
unsupervised semantics always ill-performed than supervised
attributes across all methods. The reason is that the FSL setting
alleviates the inherent noise of unsupervised semantics to
perform better (and as good as) supervised semantic. We also
experiment on the OSL task, where all conditions are same as
FSL setting except a single randomly picked labeled instance
is available for each unseen class during training. More results
of OSL and FSL for AwA, CUB, SUN and aPY datasets are
reported in Table XII.

For any given image, our FSL method described in
Sect. III-D utilizes the contribution of unseen CAPDs coming
from two sources: one by combining the CAPDs of seen
classes from zero-shot setting and another by using unseen
classifier from few-shot setting. In Eq. 13, two constants (δu
and δ

′

u) combine the respective CAPDs to compute the updated
CAPD of the unseen class. In this experiment, we visualize
the contribution of δu and δ

′

u for AwA and CUB dataset in
Fig. 9. Few observations from this figure are below:

• In most cases, few-shot contribution from classifier (δ
′

u)
contributes higher than zero-shot contribution (δu). The
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Top1:
Using G

AwA CUB
att w2v glo att w2v glo

DeViSE[14] 80.9 75.3 79.4 54.0 45.7 46.0
CMT[43] 85.1 83.4 84.3 56.7 53.4 52.0
Our 87.4 84.9 85.8 56.9 55.4 55.8
mAP:
Using G

AwA CUB
att w2v glo att w2v glo

DeViSE[14] 85.0 79.3 84.9 46.4 42.6 42.9
CMT[43] 88.4 88.2 89.2 58.5 54.0 52.7
Our 92.0 89.5 89.6 58.0 56.3 56.2

TABLE XI: FSL performance comparison with the experiment
settings of [45]. Image features are taken from GoogLeNet.
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Fig. 9: Contribution of δu and δ
′

u to update unseen class CAPD

reason is that few instances of unseen class can make
better generalization than no instance during training.

• Zero-shot contribution (δu) contributes higher on super-
vised attribute case than word2vec or GloVe across two
datasets. The reason is that supervised attributes contain
less noise which gives high confidence to zero-shot based
CAPD.

• While comparing OSL and FSL, few-shot contribution
from classifier (δ

′

u) contributes higher in FSL than OSL
case. The reason is that in FSL settings, any unseen
classifier becomes more confident than OSL settings as
FSL observes more than one instances during training.

• While comparing word2vec and GloVe for both OSL
and FSL settings, zero-shot contribution (δu) contributes
higher for word2vec than GloVe semantics. It suggests
that word2vec is a better semantic embedding than GloVe
for FSL task.

• While comparing AwA and CUB, zero-shot contribution
(δu) contributes lower than few-shot contribution from
classifier (δ

′

u) for CUB across all semantics used. The
reason is that CUB is a more difficult dataset than
AwA in zero-shot setting. One can find that the overall
performance on CUB is lower than AwA in all cases (i.e.,
ZSL, F/OSL and GZSL).

6) All results at a glance.: With experiment setting of [9],
we juxtapose all results of OSL, FSL, ZSL and GZSL for
AwA, CUB, SUN and aPY datasets in Table XII. Some overall
observations from these results are below:
• Performance improves from OSL to FSL settings. This

is expected because in FSL setting, more than one (three
to be exact) instances of unseen class are used as labeled

Dataset Using G OSL FSL ZSL GZSL
Semantic HM accs accu

aPY Top1:att 71.2 83.6 40.7 35.7 40.5 32.0
mAP: att 77.7 88.3 45.1 27.7 24.1 32.7

AwA

Top1:att 82.8 87.4 76.2 50.8 43.2 61.7
mAP: att 86.9 92.0 71.7 50.0 41.2 63.6
Top1:w2v 76.9 84.7 56.4 43.6 42.8 44.6
mAP: w2v 82.0 89.5 50.8 38.5 35.3 42.5
Top1:glo 78.2 85.8 60.7 44.7 46.4 43.2
mAP: glo 83.7 89.6 54.3 42.2 37.8 47.9

CUB

Top1:att 46.3 56.9 44.0 29.5 23.4 39.9
mAP: att 46.9 58.0 40.5 31.8 29.2 34.9
Top1:w2v 41.7 55.4 33.2 14.9 9.8 31.1
mAP: w2v 41.9 56.3 29.5 23.2 21.9 24.6
Top1:glo 41.2 55.8 31.1 11.7 7.2 30.3
mAP: glo 40.3 56.2 28.3 23.1 22.8 23.4

SUN

SUN (645/72: Seen/Unseen Split)
Top1:att 53.7 66.3 59.8 28.3 22.2 39.2
mAP: att 55.2 68.9 60.5 34.1 27.1 45.9

SUN-10 (707/10: Seen/Unseen Split)
Top1:att 80.8 87.5 77.9 33.6 25.7 48.6
mAP: att 84.3 90.1 76.8 40.0 32.3 52.7

TABLE XII: All results at a glance on aPY, AwA, CUB and
SUN datasets from top to down.

during training.
• The performance gap between supervised attributes and

unsupervised word2vec or GloVe is greatly reduced in
OSL and FSL. It suggests that getting few instances as
labeled during training helps to greatly compensate the
noise of unsupervised semantics.

• O/FSL setting should always outperform ZSL because
more information of unseen is revealed in O/FSL set-
tings. However, we got one exception in SUN dataset
where OSL perform worse than ZSL. The reason is that
the SUN dataset has 717 classes and only one labeled
instance of unseen class could not provide discriminative
information which eventually confuses our auto unseen
CAPD weighting process.

• ZSL results are different from Table IV, V and VI because
here our method is tuned for GZSL case not on ZSL. In
addition, random selection of 80% training instance of
seen classes across 10 different trails affects the result.

• Performance of accu of GZSL is always lower than ZSL
because ZSL accuracy is the oracle case of accu.

7) Complexity Analysis: In Table XIII, we report the train-
ing duration for different parameters involved in our approach.
These include, class specific weights Wi, learned metric M,
seen unseen relationship coefficient α/β, seen generalization
coefficient γ and automatic selection of δu/δ′u. As expected,
learning Wi and M take relatively large time as it involves
the main training. Moreover, training time gets increased from
AwA, aPY to CUB, SUN and ImageNet as the total number
of seen classes as well as number of images are increased.
In contrast, learning α/β and γ is very fast because they are
based on limited size word vectors only (not involving image
features). This means that the overhead our model requires to
adapt to GZSL setting is minimal.
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Dataset Wi M α/β γ δu/δ′u
AwA 92s 2s 2s 2s 10s
CUB 180s 60s 6s 6s 33s
aPY 50s 2s 1s 1s 3s
SUN 250s 110s 20s 50s 100s
ImageNet 48hr 24hr 300s - -

TABLE XIII: Training duration for different parameter sets on
all datasets.

C. Discussion

Based on our experiments, we draw the following contribu-
tions of our work:

Benefits of CAPD: A CAPD points out the most likely
class. If a semantic space embedding vector of a class and
the CAPD of the image lies close to each other, there is a
strong confidence for that class. One important contribution
of this paper is the derivation of the CAPD for each unseen
class. Conventional ZSL approaches in this vein of thought
essentially calculate one principal direction [4], [39], [50],
[37], [58]. Generalizing all seen-unseen classes with only
one principal direction cannot capture the differences among
classes effectively. In our work, each CAPD is obtained with
the help of bilinear mapping (matrix multiplication). One can
extend this by incorporating latent variables, in line with the
work Xian et al. [50] where a collection of bilinear maps along
with a selection criterion is used.

Benefits of Nearest Seen Classes: Intuitively, when we
describe a novel object, rather than giving a dissimilar object
as an example, we use a similar known object. This hints
that we can reconstruct the CAPD of an unseen class with the
CAPDs of the similar seen classes. This idea helps to improve
the prediction performance.

How Many Seen Classes are Required? Results presented
in Fig. 4 support the idea that all seen classes are not always
necessary. We propose a simple yet effective solution for
selecting adaptively the number of similar seen classes for each
unseen class (see the discussion in Sec. III-B). This scheme
allows different set of useful seen classes required to describe
an unseen class.

Extension to GZSL Setting: ZSL methods are biased
to assign high prediction scores towards seen classes while
performing GZSL task. Due to this reason, conventional
ZSL methods fail to achieve good performance in GZSL.
Our proposed method solves this problem by adapting seen-
unseen class diversity in a novel manner. Unlike [43], [9], our
adaptation technique does not take any extra supervision from
training/validation image data. We show that class semantic
information can be used to adapt seen-unseen diversity.

Extension to Few/One Shot Settings: In some applications,
a few images of a new class may become available for
training. To adapt with such situations, our method can train
a model for the new class without disturbing the previous
training. The CAPD from the new model is combined with
its previous CAPD (of unseen settings) to obtain an updated
CAPD with few-shot refinement. We propose an automatic
way of combining CAPDs from two sources by measuring

the quality of prediction responses of training images. Our
updated CAPD provides better fitness score for unseen class
prediction.

VI. CONCLUSION

We propose a novel unified solution to ZSL, GZSL and
F/OSL problems utilizing the concept of class adaptive princi-
pal direction (CAPD) that enables efficient and discriminative
embeddings of unseen class images in semantic space for
recognition and retrieval. We introduce an automatic solution
to select a reduced set of relevant seen classes. As demon-
strated in our extensive experimental analysis, our method
works consistently well in both unsupervised and supervised
ZSL settings and achieves the superior performance in par-
ticular for the unsupervised case. It provides several benefits
including reliable generalization and noise suppression in the
semantic space. In addition to ZSL, our method also performs
very well in GZSL settings. We propose an easy solution to
match the seen-unseen diversity of classes at the algorithmic
level. Unlike conventional methods, our GZSL strategy can
balance seen-unseen performance to achieve overall better
recognition rates. We have extended our CAPD based ZSL
approach to adapt with FSL settings. Our approach easily takes
the advantage of few examples available in FSL task to fine
tune unseen CAPDs to improve classification performance. As
a future work, we will extend our approach to transductive
settings and domain adaptation.
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